Technical Note 494 ¢ December 1990

Proving Properties of Rule-Based Systems

Prepared by:

Richard J. Waldinger, Principal Scientist
Mark E. Stickel, Principal Scientist

Artificial Intelligence Center
Computing and Engineering Sciences Division

An abbreviated version of this paper is to appear in the proceedings of the Seventh IEEE Conference
on Artificial Intelligence Applications, Miami Beach, Florida, February 1991.

This research is supported by the United States Air Force, Rome Air Development Center under
Contract F30602-87-1D-0094 and the National Science Foundation under Grant CCR-8904809. The
views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Rome Air Develop-
ment Center, the United States Air Force, the National Science Foundation, or the United States
government.,

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
DEC 1990 2. REPORT TYPE 00-12-1990 to 00-12-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Proving Properties of Rule-Based Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 29
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Rule-based systeins are being applied to tasks of increasing responsibility, Deductive meth-
ods are being applied to their validation, to detect flaws in these systems and enable us to
nse them with more confidence.

Fach systemn of rules is encoded as a set of axioms that define the system theory. The
operation of the rnle language and information about the subject domain are also described
in the system theory. Validation tasks, such as establishing termination, unreachability,
or consistency, or verifying properties of the system, are all phrased as conjectures. If we
succeed in establishing the validity of the conjecture in the system theory, we have carried
out the corresponding validation task.

If the proof is restricted to be sufficiently consiruciive, we may extract from it infor-
mation other than a simple yes/no answer. For example, we may obtain a description of a
situation in which an error or anomaly may occur.

A method for the gradual fornmlation of specifications based on the attempted proofl
of a series of conjectures has been found to be suitable forr rule-based systems. Such a
specification can serve as the basis for a reengineering of the system using conventional
software technology.

Validation conjectures are proved or disproved by a new theorem-proving system, SNARK,
which implements (nonclausal) resolution and paramodulation, an optional constructive re-
striction, and some facilities for proof by induction. The system lhas already been applied

to prove properties of a number of simple rule-based systems.

1 Introduction

Langnages based on rules are an appealing implementation vehicle for expert systems. The
system can be developed incrementally without much preliminary planning. In introducing
a new rule, one supposedly need have little understanding of how the rest of the system

behaves. The rules may embody the advice of many different experts, who are ignorant

of each other’s opinions and may even disagree with each other. Proponents of rule-based
methodologies have found that they can develop rumming systems far more quickly than
with conventional programming languages.

As a consequence of this success, expert systems based ou mles have been proposed for
tasks of increasing responsibility, including aircraft and spacecraft fault diagnosis as well as
financial and medical advice. Tor this reason, the gnestion arises of liow we can establish
that these systeins will be worthy of our confidence?

This is where a conflict emerges. Accumulated experience suggests that to be trnst-
worthy, a system niust be constructed in a systematic way that begins with an attemnpt to
formulate its specification prior to the implementation effort. This doctrine is antithetical to
the rule-based systemn methodology, in which the intended behavior of the systemn changes at
each stage of its implementation. The system is developed in the absence of specifications;
in fact, the methodology may be regarded as a framework for rapid prototyping, in which
we gradually fonnulate an executable specification through experimeutation. Qu the other
hand, a complex nondeterministic system of rules is rarely acceptable as a specification; it
is difficult for anyone, including its developers, to predict what it will do.

It is not the purpose of this paper to criticize or imnprove the rule-based system method-
ology. Ratlier, we shall attempt to apply deductive techuiques to support the methodology
as it is practiced. We shall provide techniques to determine what a rule systemn does, to
identify its faults, and to establish confidence in it. One may be able to forniulate a single
specification that chiaracterizes the intended behavior of the system. That specification may
then be used as the basis for a reimplementé.tion of the system using conventional software-
engineering techniques. We may hope that the reimplemented system will be more efficient,
concise, and reliable than the original.

In other cases, in which the system is too complex to allow a full specification to be
verified or even formulated, we can use deductive inethods to assist in the testing of the
system. We can generate sets of test cases that exercise all the rules of the system or that

cause certain inconsistencies or anomalies to occur. We can defect that certain rules will

never be executed. The same deductive framework can serve a variety of these purposes.

Becanse rules look like logical sentences, it is tempting to treat them that ‘wa,y‘, and
analyze them for properties such as consistency. In fact, rules cannot usually be understood
in a purely declarative way. They are imperative constructs with the intended side effects of
adding elements to and deleting them from a single data structure, the “working memory.”
In this paper, we treat a rule language as an imperative language. Because all side effects
in the langnage alter a single structure, the language is more amenable to logical analysis
than most imperative languages, such as those with general assignment statements.

Special problems arise because of the nondeterministic nature of rule-based languages.
A situation can occur in which more than one rule is applicable, and the system implemen-
tation must choose between them. Different implementations may make different choices
and a system may behave correctly in one implementation and not in another. It may be
difficult to anticipate what different implementations may do.

Conventional program verification often assumes that a full specification for a correu‘:t
system is available. In this work, we recognize that the system may be incorrect and
the épeciﬁcation may be only partial. We detect fanlts and formulate the specification
gradually, as a result of attempts to prove a series of conjectures about the system. We
may also attempt to prove the conjecture’s negation, which will hold if the system fails to
possess the desired property.

In most work on programn verification, a proof gives us at best a yes/no answer as
to whether a system meets its specification. Implicit within a proof, however, is other
potentially valuable information, which is usually discarded. For example, if we prove the
existence of a fault in a system, we may be able to extract from the pfoof a description of
the conditions under which that fault occurs. Program synthesis techniques for extracting
programs from constructive proofs (e.g., Manna and Waldinger [9]) may also be applied to

extract other sorts of information.

1.1 Validation Tasks

In keeping with these goals, we consider a variety of validation tasks, most of which have

both a positive and a negative aspect.

(-+) Verification: Proving that a system will always satisfy a given condition.

(—) Fault detection: Exhibiting an input that causes a system to fail to satisfy a given

condition.

(4) Termination: Proving that a system will always terminate.

{—) Loop detection: Exhibiting an input that will cause a system to fail to terminate.

e (+) Firing: Exhibiting an input that canses a given rule to fire.

(=) Unreachability: Proving that no input will cause a given rule to fire.

e (4) Consistency: Proving that no input can produce an inconsistent working memory.

(—) Inconsistency: Ixhibiting an input that will produce an inconsistent working

memory.

Some of these problens are significantly more difficult than others. For example, ta prove
that a system always terminates will generally require considering all execution histories
beginning from any possible input, at least in principle. Exhibiting an input that causes
Rule A to fire may require considering a small number of inputs and only part of the system.
Thus, we can expect to be successful at this smaller task inore readily than at establishing

termination.

1.2 The System Theory

Our approach is deductive. TFor a given system of rules, we develop a system theory, which is
defined by a set of axioms that express the actual behavior of the system. The system theory
also incorporates any background knowledge we wish to take into account in validating the

system. ILor each validation task, there is an associated conjecture. If we can manage

to establish the validity of the conjecture in the system theory, we have performed the
associated validation task. Typically, to perform the negative aspect of a task, we prove
the negation of the conjecture associated with its positive aspect. If we want to exhibit
an input or other ohject as part of our task, we must restrict the proof syuntactically to be
sufficiently constructive; this means that the proof will tell us how to build such an object.

The description of the object can then be extracted from the proof antomatically.

1.3 Related Work

There have been several efforts to apply conventional testing techniques to rule-based sys-
tems (e.g., Becker et al. [1], Kiper [8]). The body of work closest to ours is that of
Chang, Combs, and Stachowitz [11, 4, 5] at the Lockheed Artificial Intelligence Center.
The Lockheed work, like ours, deals with some specifications of the expected properties
of the rule-based system and uses deductive methods to establish them. It uses Prolog as
an inference system, which limits it to properties expressed as Horn clauses. The SNARK
theorem prover we are developing accepts properties in a full first-order logic, with mathe-
nmiatical induction. Unlike most researchers, we deal with rules that may delete as well as
add elements of the working memory. Our work is also original in that it presents a unified

theoretical framework for expressing and establishing properties of rule-hased systems.

1.4 Outline of this Paper

We first provide a description of a2 somewhat idealized rule language in Section 2. or a given
system of rules, we show how to constrnct a corresponding system theory in Section 3 and
in Section 4 how to translate validation tasks into conjectures in the theory. In Section 5,
wé exhibit portions of a validation prool and present a scenario leading to the formulation
of a specification for a textbook rule-based system. Finally, in Section G we describe the
SNARK theorem prover we have been developing to prove validation conjectures and to

extract information from validation proofs.

[

2 Rule-Based Systems

In this section we present a prototype rule-based system framework that will serve as the

focus of our eflort.

2.1 The Rule Language

Our rule language is a smoothed-up version of OPS5 [7, 3]. A rule describes an opera-
tion to be performed on working memory. The working memory is a (finite) set of atoms
p(11,...,1), where p is a predicate symbol and ty,...,% (£ > 0) are terms. The atoms
in working memory are ground, that is, they contain no variables, only constant, {fanction,

and predicate symbols. An atom p() with no arguments will be written p. For example,
{farmer(john), banker(mother(john))}

is a working memory.

A rule is an expression of the form
L],...,Lm — _Rl,...,Rn

Here each element L; of the left side is a literal, that is, either an atom p(ty,...,1;) or the
negation not p(ty,...,1) of an atom. Each element R; of the right side is an (unnegated)
atom. We do not require rule elements to be ground, that is, they may contain variables.
For example

red(x), not big(z) — blue(x)
is a rule. We impose certain restrictions on rules; these will be discussed after we have
described rule application.

2.2 Rule Application

To apply a rule to working memory, we first select a ground instance of the rule, that

is, we replace each of its variables with a corresponding ground term. We require that the

instances of the positive (unnegated) atomns on the left side of the rule be present in working
memory and that the instances of the negated atoms be absent.

For example, the rule
Rule B: red(z), not big(zx) — blue(z)

is applicable to the working memory

{red(b), big(a)}.

The appropriate rule instance is obtained by replacing & with the ground term 4. The
instance red(b) of the positive atom red(z) is present in this working memory; the instance
big(b) of the negated atom big(x) is absent.

To apply an applicable rule to the working memory, we delete the selected instances of
the positive atoms of the left side and add the instances of the atoms of the right side. Tor
example, to apply Rule B to the working memory {red(b),big(a)}, we delete red(b) and

add blue(b), to obtain the new working memory

{blue(b), big(a)}.

Note that instances of the positive atoms on the left side are deleted as the rule is
applied. This means that if any of these atoms is to be retained, it must appear on the
right side as well, so that it can be added back into working memory.

For example, the rule

red(z),big(a) — blue(w)

will delete instances of both red(x) and big(z) from working memory. If it is intended that

the rule retain the instaunee of big(z), the rule must read
red(z), big(a) — blue(z), big(z).

(This rule describes a situation in which big red blocks are to be painted blue, but remain

big.) The rationale for this convention is that the positive atoms of the left side are replaced

-

in working memory by the atoms of the right side; thus the rule behaves as a rewriting of
working mewmory.

One restriction we impose on the language is that every variable that occurs anywhere
in a rnle mnst occur in some positive atom on the left side. This implies that once we have
instantiated these positive atoms, we have instantiated the entire rule. lor example, the
rule

red(z), not big(y) — red(z)

violates this restriction for two reasons: the variable y from the negated atom big(y) and
the variable z from the right side are not p.resent in the positive atomn red(z) on the left
side. If we attempt to apply this rule, it is unclear which instance of big(y) is to be absent
from working memory and which instance of red(z) is to be added.

We do not allow explicit negation signs in the working memory. This is not an essential
limitation. If it is desired to express that an atom p(t,...,1;) is false, we can introduce a
new predicate symbol negp, and include negp(t;, ..., %) in the working memory, with the
understanding, to be expressed in the theory, that negp(t,...,{;) is the complement of
plt, .- t)-

A rule systemis an (unordered) set of rules. To apply a rule systen to a working memory,
we repeatedly apply any of the rules to the working memory until no rule is applicable. The
final working memory is the result of applying the system. Application of a rule system
is nondeterministic; by selecting different rules, or diflerent instances of the same rule, we

may obtain different results.

2.3 Explicit Halting

Our systems halt only when no rule is applicable. Some rule-based languages offer an
explicit halt statement: if the special symbol HALT appears on the right side of a rule
that is applied, the system will halt at once, even if some rule is applicable. This is a
convenience that does not increase the logical power of the langnage. Any system with the

halt feature can be transformed into one that behaves the same way without the feature.

The transformed system includes the negated atom not hall (that is, not hali()) on the
left side of each rule. If any rule contains the special symbol H ALT on its right side, it is
transformed into a rule with the atom hell on its right side instead. If such a rule should
fire, it adds the atom hall to working memory. Then no rule will be applicable, and the
transformed system will halt, without invoking any special halt feature.

For example, the system

red(z) — blue(x)
yellow(z) — HALT

with the halt feature is transformed into the system

red(z), not hall — blue(z)

yellow(z), notl hall — hali

without the halt feature. The two systems behave the same way.

2.4 Conflict Resolution Strategy

When several rules are applicable to the same working memory, the system invokes a conflict
resolution strategy to choose a single rule to be applied. Conflict resolution strategies tend
to be complex. The spirit of the rule-based methodology suggests that the correctness of the
system should not depend on the details of the strategy. The choices of the strategy may
influence the efficiency of the system or the understandability of its execution sequence, but
the correctness of the final outcome should be independent of these choices. Consequently,
we have developed an approach that will perform our validation tasks regardless of the
conflict resolution strategy. If some aspects of the strategy turn out to be crucial to the
correctness of the system, they may be expressed in an augmented system theory.

An exception is made in the case of the specificity aspect of the conflict resolution
strategy, which does aflect the correctness of the system. According to the specificity
principle, a more specific rule is to be preferred to a morve general one. This principle allows

us to state a rule in its greatest generality, aud tlien to add exceptions by introducing new

rules, without the need to qualify the original rule. For example, in the system

Rule 1 : bird(z) — bird(z), fly(z)

Rule 21 bird(z), penguin{z) — bird(z), penguin(z), neg fly(z)

Rule 3: bird(z), penguin(a),incirplane(z) — -

bird(z), penguin(z), incirplane(z), fly(z)
each rule is more specific than the previous one, which it qualifies. It might be errbneous to
apply the earlier rule if the later rule were applicable. For example, the second rule should
not be applied if the penguin is in an airplane, because then the third rule should supersede
it. Thus the second rule has the implicit condition not inairplane(z).
Because specificity has a bearing on correctness concerns, we do want it reflected in

the system theory. We achieve this by transforming rules so that the implicit conditions

imposed by the strategy are made explicit. For example, Rule 2 would be transformed to

Rule 2': lbird(2), pengunin(z), not inairplane(z) —
bird(x), penguin(z), neg fly{z}

Rule 2/ cannot be applied if Rule 3 is applicable. Rule 1 above would be transformed into
Rule 1': bird(z), not penguin(z), not inairplane(z) — bird(z), fly(x)

Rule 1’ cannot be applied i either Rule 2/ or Rule 3 is applicable.
This transformation has no effect on the execution of the system, but we shall apply
it so that the specificity aspect of the conflict resolution strategy will be reflected in our

validation.

3 The System Theory

In this section, we describe how a given rule system is described in a corresponding system
theory, so that questions about the systemn may be phrased as conjectures within the theory.

Cousider a rule
P Pyonot Ch,. .., not Q5 — Ry, By

10

with variables 2y, ..., 2.
We define a relation applic(r, (11, ..., 1), w), which holds if rule » is applicable to working
memory w with variables z,,..., 2z instantiated to gronund terms #y,. .., {, respectively, by

the axiom
Pl[f,l,. . .,tk] cw

A

A
'Pl'[i‘h'"?tk] cw
applic(r, (11, ...,), w) = A
Qrltrr . ti] ¢ w

A

A
i Qjlt1, ., t] §w

for all ground terms 1;,...,1; and any working memory w. Here (¢y,...,%;) is a tuple of

ground terms and r is a constant that names the rule. We write P[ty,...,1;] for the result
of replacing each variable z,...,2r in P with the corresponding term #y,...,%;. In other
words, the appropriate instances of the positive atoms must be present in working memory
and the corresponding instances of the negated atoms must he absent. A separate such
axiom is provided for each rule of the system.

For example, for the rule
Rule 1 : pareni(z,y), not male(z) — pareni(z,y), mother(z,y)
we provide the axiom
applic(rulel, (s,1), w) = [pareni(s,1) € w A male(s) € w].

Note that each predicate symbol in a rule is represented by a function symbol in the

system theory. Thus, perent and male are function symbols.

11

We also define a function apply(r, {t1,...,1),w), whose value is the result of applying
the rnle r to working memory w with variables zp,..., 2 instantiated to ground terms

11,---,lk, by the axiom

if applic(r, (L, ..., 1), w)

then apply(r,(t1,.... e}, w)=w — Pilt1,..., %]

— Pilty, .. t]

Sl (31 TP 7Y

+ Rl’[th' . '7tk]‘

Here w — w and w + u are the results of deleting the element « from the set w and adding
u to w, respectively.

For example, for Rule 1, we provide the axiom

if applic(rulel, (s, 1), w)
then apply(rulel, (s,t),w)=w — parent(s,t)
+ pareni(s,t)
+ mother(s,).
Wlen we leave a variable free, we mean it to have implicit universal quantification. Also,
we use our vocabulary to indicate the sorts of the objects involved. For example, the above
axiom is to apply to any working memory w and all ground terms s and #.

Note that when a positive atom occurs on both the left and the rigl.lt sides of the rule,
tlie corresponding term is first deleted from and then added to the set w in the epply axiom.
Because the term is certain to occur in the set, this will always leave the set the same. For
example, in the epply axiom for Rule 1, the term perent(s,t) is first deleted, then added.
To simplify the axioms (and the corresponding proofs), these operations will be omitted.

The apply axiom for Rule 1 will actually read
if upplic(rulel, (s, 1), w) then apply(rulel,{s,1),w) = w + mother(t).

12

The following axiom tells us that if a rule is applicable to a working memory, that rule

must be one of the rules of the system:

if applie(r,i,w)
then »=rulelVv-.--Vr=rulen,
where t is a tuple of gronnd terms.
More complex versious of this axiom may be substituted if one desires to express more
subtle aspects of the conflict resolution strategy.
We shall say that the enlire system is applicable to a working memory w, denoted by

appl{w), if some rule, with some instantiation, is applicable. This is expressed by the axiom
appl{w) = (Ir, Depplic(r, 1, w).

A working memory w to which no rule is applicable, that is, -appl(w), is called a final
working memory.
This translation of rules into axioms depends on our {formnlation of the rule language;

the translation mechanism for other languages will differ slightly.

3.1 Histortes

A history is a description of a finite initial segment of a possible computation of the system.

In the theory, a history is a finite tuple of pairs

(r1,11), vy (Pas).

ith

Fach 7; is the rule applied at the #** stage of the computation. Each ¢; is a tuple of ground

th

terms indicating how the variables of the rule r; are instantiated at the i*" stage.

A history h = ((r1,11),...,{rn,1s)) is applicable to a working memory w, denoted by

hist(h,w), if there is a finite sequence of working memories
U, Wy ..oy Wy,

where w = wq, such that

wiy1 = apply(ri, ti, wi);

13

that is, each memory is obtained from the previous one by applying the corresponding rule

from the history. This is expressed by the axioms

hist((},w)
hist((r, 1) ¢ h,w) = applic(r,t,w) A hist(h, apply(r,1, w))

for all working memories w, rules r, tuples of ground terms ¢, and histories k. Here (r,t) e h2
is the history obtained by inserting the pair (r,1) at the beginning of the history A.
The result sys(h,w) of applying an applicable history & to a given working memnory w

is expressed by the axioms

sys((),w)=w
if hist({r,t) o h,w) then sys((r,t) e h,w) = sys(h, epply(r,t,w)).

The second axiom states that the result of applying a nonempty history is the same as that
of applying its first rule and instantiation, and then applying the remainder of the history.
The result is itsell a working memory.

Note that a history describes an initial segment of a computation of a rule system,
not necessarily a full computation; more rules may he applicable to the resulting working
memory. We say that h is a terminating history starting from w, denoted by ter(h,w), il h

is applicable to w and results in a final working memory. This is expressed by the axioms

ter({},w) = —appl(w)

ter((r,1) o h,w) = applic(r,t,w) A ter(h, epply(r, 1, w)).

It can he establislied that
ter(h,w) = hist(h,w) A ~appl(sys(h, w)).

3.2 Finite Sets and Unique Names

Because we use finite sets of cxpressions to represent working memory, it is necessary to

incorporate the theory of finite sets into our system theory. In particular, we include axioms

that describe the set addition function w + v and the set membership relation « € w:

ué {}
uew+tu
itfucwilhenu€w4v

if u#vithenif u€w+vihen v € w.

For the set deletion function w — v we have

v w—v

if u€w—vihen vew.

We include a general well-founded induction principle, described in the next subsection,
which applies to finite sets and finite histories as well.
Properties of tuples, {or reasoning about histories and about tuples of ground terms, are
also included but will not be presented lere. Theories of finite sets and tuples are described
“more fully in Manna and Waldinger [10].
Although it inay seem pedantic, we must include axioms that tell us that distinct Tunc-
tion symbols correspond to distinct predicate symbols in working memory. Tor example,

red(s) and blue(t) cannot stand for the same atom. This is expressed by the axiom

red(s) # blue(t).

‘We must provide such an axiom for each pair of function symbols corresponding to predicate
symbols in working meimory.

‘We must also provide an axiom stating that if two terms are distinct, they caunot be
made identical by applying any of the predicate symbols from the working memory; e.g.,

for the predicate symbol red, we have
if red(ty) = red(ty) then 1) = to.

A similar axiom is provided for each Tunction symbol corresponding to a predicate symbol
ki

from working memory.

3.3 Well-Founded Induction

Many proofs require use of an induction principle. We use well-founded induction (also
- called Noetherian induction). This principle has the following form.
To prove a sentence

(V) Plw]
prove the inductive step

(V) if (V') if w' < wthen Plw']]

then Plw]

Here < is a well-founded relation, that is, one that admits no infinite decreasing sequences
Wy = Wy W3 > e

We provide definitions of many known well-founded relations. For example, the proper
subset relation is known to be well-Tounded over the finite sets because there are no infinite
sequences of finite sets

wy DWwy Dwg D -

We also include as lemmas other properties of the proper subset relation, e.g.,
ifu€wthen w—u C w.

Well-founded relations over the tuples are also provided.

4 Validation Conjectures

Many validation tasks may be phirased as conjectures within the system theory; if we can
establish the validity of the conjecture in the theory, we have carried out the validation

{ask.

16

For example, suppose we wish to determine whetlier, for the given rule system, big, red

ohjects will be painted yellow. We may phrase this task as:

(if red(l) € w A
: big(1) € w A

(Vw, h, 1) glt) € w

ter(h,w)

| then yellow(i) € sys(h,w) |
If we can prove this sentence in the system theory, we have shown that the system satisfies
the condition.

Note that the sentence does not establish termination of the system, but ouly that if a
history does terminate, the condition will be satisfied. To show that the system does always

terminate, it suffices to establish the following ierminaiion condition:
if applic(r,t,w) then apply(r, i, w) < w

for some well-founded relation <. In other words, we show that each applicable rule reduces
the size of working memory with respect to some well-founded relation. Because well-
founded relations do not admit infinite decreasing sequences, this means we must ultiinately
reach a working memory to which no rule is applicable, i.e., a final working memory.

In our examples, we require the user to provide a well-founded relation for the termnina-

tion proof. For example, the user might define

(Vi) [if red(l) € wy then red(l) € wo)
W) < we = A
(3t [red(t) € we Ared(t') & un]
Therefore, with respect to <, il one working memory is less than another, it has fewer
red objects. This is well-founded because working memories are finite. (We could define
a similar relationship in terms of the number of red objects in working memory, but this
would require reasoning about nonnegative integers, as well as sets, in the proof.) A more
ambitious effort, which we have not yet attempted, would require the system to discover

the well-founded relation as part of the proof process.

17

If we fail to prove that all red, big objects will be painted yellow, we may attempt to
establish the opposite, namely, that some red, big objects will not be painted yellow. This

can be established by proving the negation of the original conjecture, i.e., that

red(t) € w A
big(t) € w A
(Jw, h,t) 9()
ter(h, w)A

yellow(t) & sys(h, w) |

Proving this conjecture will establish the falseness of the original condition. If we restrict
a proof to be sufficiently constructive, we may extract from the proof a description of the
objects whose existence it establishes. From this proof, we may extract a description of a
case in which the condition fails to hold. In particular, we obtain a description of an initial
working memory, a terminating history, and an object such that the object is initially big
and red, but executing the history will produce a final working memory in which the object
is not painted yellow,

Suppose we cannot prove termination and we suspect that our system sometimes fails
to terminate. To prove this. we must provide a description of a possible infinite execution

th

history, in the form of three functions, , ¢, and w, which compute the ** rule, instantiation,

and working memory, respectively. These functions must satisfy the property

applic(r(i),1(2), w(i))A
apply(r(2),t(2), w(i)) = w(i + 1)
for all integers ¢ > 1. We ha've not yet experimented with proving nontermination.
If we want to establish that a particular rule, say Rule 1, can fire, we may prove the
conjecture

(Jw, b, t)[hist(h, w) A applic(rulel, 1, sys(h, w))).

If we restrict the proof to be sufficiently constructive, we may obtain descriptions of the
initial working memory 1w, history h, and instantiation ¢, such that executing A in initjal

working memory w will produce a working memory in which Rule 1 is applicable, with

18

instantialion ¢. Proving the negation of the above conjecture will establish that Rule 1 is
unreachable, i.e., cannot be executed under any circumstances.

The notion of consistency depends on an application domain. Our rule language does
not include explicit negation, but it may include predicate symbols that are understood
to be mutually inconsistent. We may expect, for example, that an object cannot be both
red and blue, or that the predicate symbol negp is to be the complement of the predicate
symbol p.

If we want to show that our system can never produce an object that is simnltaneonsly

red and blue, we may attempt Lo prove

7 hist(h,w
(Y, , 1) / ()
then —[red(l) € sys(h,w) A blue(l) € sys(h,w)]
The above conjecture implies that an object cannot be both red and blue at any stage

of the computation. If we are only concerned with the final state of the computation, we

may prove

if ter(h,w
(Vw, h,1) ()
then = [red(t) € sys(h,w) A blue(t) € sys(h,w)]
If we can prove the uegation of either of the above conjectures, we have established that
the system can produce an inconsistency, in either an intermediate state or a final state,

respectively. Restricting the proofs to be sufficiently constructive will enable us to extract

a description of how the inconsistency can ocecnr.

5 Example: The Billing Category System

To illustrate the formation of a system theory, we adapt an example from a standard
expert-systems text (the customer-billing example from Brownston et al.[3]). The system
is to assign each of a fixed, finite pool of customers to a billing category, either normal or

priority, depending on the history of the customer. The rules of the system are as follows:

Rule 1: good(z), not set{z) — good(z), set(x), priovity(z).

19

That is, il the category of a good customer has not been set, assign the customer to the

priority category.

Rule2: bad{z), not set(z) — bad(z), set(z), normal(z).

That is, if the category of a bad customer has not been set, assign the customer to the

normal category.

Rule 3 :bad(z), not sel(z),long(z) — bad(z), set(2), long(z), priority(x).

That is, if the category of a bad but long-term customer has not been set, assign the
enstomer to the priority category. Note that, by the specificity principle, Rule 3 is intended
to supersede Rule 2 when both are applicable; that is, Rule 2 is not meant to apply to

long-term customers.

5.1 The Rule Axioms

These rules are represented by the following axioms in the system theory.

if applic(r,t,w) then r = rulel Vr = rule2 V r = rulel.

In other words, the only rules that can be applicable to a given customer ¢ are Rule 1,
Rule 2, or Rule 3.

Axioms for Rule 1:
applic(rulel,l,w) = good(t) € w A sel(t) & w

Note that because the rules have only one variable, we simplify the axioms by using ¢, rather

than (), throughout.
if applic(rulel,t, w) then epply(rulel t,w) = w + sei(t) + prioriiy(t)

Becanse the atom good(z) occurs on both sides of Rule 1, the corresponding terin good(t)

is neither deleted nor added by the axiom.

20

Axioms for Rule 2:
applic(rule2,t,w) = bad(l) € w ANlong(1) € w Aset(t) € w

Note that we include in the applicability axiom for Rule 2 the condition, implied by the

specificity principle, that the rule should not be applied to long-term customers.
if applic(rule2,1,w) then apply(rule2,t,w) = w + set(t) + normal(t)
Axioms for Rule 3:
applic(rule3,t,w) = bad(t) € wAlong(1) € wA set(t) ¢ w

if applic(ruled,t, w) then apply(ruleld,t, w) = w + set(t) 4+ priority(1)

The other axioms of the system theory are the same from one system to the next.

5.2 Conjectures: A Scenario

Suppose we wish to determine whether a good customer will always be placed in the priority

category. Then we may conjecture

i good(t) € w
(Vw, h,t) | if ter(h,w) then S good(®)
then priority(t) € sys(h,w)

In fact, we cannot prove the above conjecture. We can, however, prove its negation
ter(h, w)A
(Jw, k1) | good(t) € wA
priority(t) € sys(h, w)
If we restrict the proof to be constructive, we may extract a description of the initial working
memory,

w : {good(1), set(1)}

and the Instory

h’ : ()-

21

the empty history. (The variable { is not instantiated during the proof, so it can be replaced
by any ground term that denotes a customer.) In other words, no rule is applicable to the
initial working memory {good(t), set(1)}, because customer ¢ has been marked as if his
billing category has already been set. Therefore, the final working memory sys(h, w) is the
same as the initial working memory w, and priority(t) € w.

We attempt to refine our conjecture accordingly. We speculate that if a good customer
has no set billing category, he will ultimately be placed in the priority category. We attempt
to prove

if der(h,w)
(Yw,l,1) | then if good(t) € w A set(t) € w
then priority(tl) € sys(h,w)
Again we fail to prove this, but succeed in proving its negation. I the proof is restricted to

be constructive, we may extract the (inconsistent) initial working memory
w : {bad(t), good(1)}

and the one-element history

bt {((rule2, t)).

This example has again defied our expectations. Because customer ¢ is bad as well as good

{and not a long-term customer), Rule 2 can be applied, producing the final working memary
sys(h, w) : {bad(1), good(1), set(t), normal()}.

In other words, good customer ¢ hias not been put into the priority category.

This scenario illustrates the pitfalls we may face in formulating a specification for a
rule-based system (or any system). It also illustrates how a proof systemn may help us break
through some preconceptions. With further experimentation, we may attempt to formulate

and prove a {ull specification for a rule systemn, which characterizes its intended behavior.

22

TFor the billing category system, we propose the following conjecture:

[good(l) € wVbad(t) € w]A]

i (v1) set{t) & wA
priority(t) € wA

normal(t) € w

if ter(h,w)
then [priority(t) € sys(h,w) = good(t) € wV long(t) € w)A
[normal(t) € sys(h,w) = bad() € w Along(t) € wiA
then (Yh) set(t) € sys(h, w)A
[good(t) € sys(h, w) = good(t) € w]A
[bad(?) € sys(h,w) = bad(t) € w]A

[long(t) € sys(h,w) = long(t) € w]

for all customers ¢ and working memories w. In other words, we suppose that initially each
customer is cither good or bad, but not both (V is exclusive or). Initially no customer has
liad his billing category set, and no customer is in either normal or priority category. Then
for each terminating history, we require that the customers in the final priority category
be those that are initially good customers or long-term customers. Customers in the final
normal category must be those that are initially bad customers and not long-term custoniers.
Lvery customer must have his final billing category set. Furtherinore, we may expect that
customers in the final good-customer, bad-customer and long-term customer categories are
the same as those that were in those categories initially.

The above conjecture relates the initial and final working memories. For the proof
to succeed, we mnst generalize the theorem to relate the intermediate and final working
memories. The generalized conjectnre implies the above conjecture as a special case. We
hiave not yet proved the above conjecture.

Termination of the system must be proved separately, by establishing the usual termi-

23

nation condition
if applic(r,t,w)
then apply(r,t,w) < w
for some well-Tounded relation <. In this case, the well-Tounded relation < may be defined

by

(V) [if sel(t) € wo then sel(t) € un]
W < Wy = A
(3t} [set(t) € wy A set(t') & wy]
In other words, with respecl to <, one working memory is less than another if it has
more customers with set billing category. This is well-founded because there are only a

finite number of customers.

6 The SNARK System

To. prove validation conjectures, a theorem prover requires an unusual combination of fea-

tures. In particular, it must

¢ Prove senteuces in full first-order logic.

Deal expeditiously with equality and ordering relations.

Prove theorems by mathematical induction.

IMandle finite sets and tuples.

Restrict proofs to be sufficiently constructive to allow information extraction when

necessary.
¢ Prove simple theorems without human assistance.

While some existing theorem provers excel in certain of these areas, they are typically
deficient in others. The Argonne system [12], for example, is proficient at full first-order

logic with equalily, but has no facilities for proof by induction. The Boyer-Moore theorem

24

prover [2] specializes in proof by induction, but does not allow full first-order quantification.
The Nuprl system [6] is certainly expressive enough—it allows full quantification and proof
by induction—but is not geared to finding proofs automatically. Turthermore, it relies
entirely on a constructive logic that may prove cumbersome when no information needs to
be extracted {from the proof.

For these reasons, we have been developing a new theorem prover, SNARK, for appli-
cation in software enginecring and artificial intelligence. SNARIK is especially appropriate
for the validation of rule-based systems.

SNARK operates fully automatically and uses an agenda to order inference operations.
Similarly to the Argonne system, SNARK attempts to compute the deductive closure of a
set of formulas. The user selects the inference operations and starting formulas to be used.
Agenda elements are formulas in the set of support to be operated upon by all selected
inference rules, and are ordered by symbol count.

The most important irnference operations available in the current system are binary
resolution and paramodulation. These rules allow SNARI to deal with predicate logic with
equality, which underlies the system theory for rule-based systems. We have used extended
versions of these inference rules that aré applicable to nouclausal formulas as well as clauses.
Hyperresolution caun be simulated by control restrictions on the use of binary resolveuts.
Both clausal and nonclausal subsumption are available to eliminate redundant formulas.

TFormulas can be simplified by user-given or derived equalities or equivalences. Innermost
or outermost simplification strategies can be specified. Derived equalities can be oriented
dutomatically by Knuth-Bendix or recursive decomposition simplification orderings. Truth-
funetional simplification is accomplished by rewriting rules, which makes it easy to add new
connectives and their simplification rules.

SNARK can use either nonclausal formulas or the more restrictive clauses. If clauses
are to be used, SNARK can automatically translate more general formulas to clauses. Even
if clauses are primarily used, translation of formulas to clauses is not required to be done

only at the beginning of the prool. Rewrites can specily that an atomic subformula of a

formula be rewritten to a formula; the result of rewriting may be a nonclausal formula that

is later simplified to clause form. For example, the rewrite
vtecwtrv=u=v9Vuecw

would result in the clause a € s + = V C being rewritten to (¢ = 2 V e € 5) V C, which
could be replaced by two clauses.

Efficient formula- and term-indexing methods—a choice of path indexing or discrimina-
tion-tree indexing—are used to efficiently retrieve the relevant formulas or terms for infer-
ence, subsumption, and simplification operations. I*flicient indexing is essential for solving
difficult problems that require derivation of a large number of results.

SNARK uses sorted logic to efficieutly represent the informatioun that certain classes
of objects being manipulated are disjoint. In the examples of this paper, several sorts are
used: rules, working memories, working memory elements, customers, history lists, and the
pairs that are history list members.

SNARK supports the use of special nnification (and subsumption and equality} algo-
rithms. Associative-commutative subsumption is widely used for truth-functional simplifi-
cation, aind commutative matching is used to efficieutly iinplement symmetry of the equality
relation.

Although at an early stage of development, SNARK has already been useful in proving

properties of rnle-based systems, including those indicated in the scenario (Section 5.2).

7 Summary and Plans

Our work suggests that deductive methods are appropriate to support testing aud other
validation tasks, besides verification, for rule-based systems. Preliminary results in applying
the new deduction system SNARK to sample rule-based systems have been promising.
By restricting the system to be sufficiently constructive, we have lheen able to extract
information other than simple yes/no answers from proofs. We have found that a method

for formulating specifications by proposing a series of conjectures is appropriate to rule-

20

based systems.

We intend to develop the system theory to apply to more realistic rule languages and
to extend SNARK to more complex rule systems and more sophisticated properties and
conjectures. The extension will be carried out by introducing inference rules targeted to the
application (e.g., rules for reasoning about sets and ordering relations), strategic deduction
(e.g., special treatment for inductive proofs), interactive controls, and parallel search for

proofs.

References

[1] L. Becker, P. Green, R.l. Duckworth, J. Bhatnagar, and A. Pease. Evidence flow
graphs for VV&T. In Preliminary Proceedings IJCAI-89 Workshop on Verification,
Validation and Testing of Knowledge-Based Systems, 1989. Detroit, M.

[2] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Fzpert Systems in
OPS5: An Iniroduction to Rule-Based Programming. Addison-Wesley, Reading, MA,
1985.

[4] C. Chang and R. Stachowitz. Testing expert systems. In Proceedings of the Space
Operations Automation and Robotics (SOAR-88) Workshop, 1988. Dayton, Ol.

[5] C. Chang, R. Stachowitz, and J.B. Combs. Testing integrated knowledge-based sys-
tems. In IEEE Inlernational Workshop on Tools for Al 1989. Fairfax, Virginia.

[6] R. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, Englewood Cliffs, NJ, 1986.

[7] C.L. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA, July 1981.

[8] J. Kiper. Structural testing of rule-based expert systems. In Preliminary Proceed-
ings IJCAI-89 Workshop on Verification, Validation and Tesling of Knowledge-Based
Systems, 1989. Detroit, MI.

[9] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Transactions on Programming Languages eand Systems, 2:90-121, 1980.

[10] Z. Manna and R. Waldinger. The Logicel Basis for Computer Programming, volume
1: Deductive Reasoning. Addison-Wesley, 1985.

[11] R. Stachowitz, J. Combs, and C. Chang. Validation of knowledge-based systems. In
Proceedings of the Second ATAA/NASA/USAF Symposium on Aulomalion, Robolics
and Advanced Compuling for the Nelional Space Program, 1987. Arlington, VA.

(12] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Aulomated Reasoning. Prentice Hall,
Englewood Cliffs, NJ, 1984.

28

